Combining Linguistic Features with Weighted Bayesian Classifier for Temporal Reference Processing
نویسندگان
چکیده
Temporal reference is an issue of determining how events relate to one another. Determining temporal relations relies on the combination of the information, which is explicit or implicit in a language. This paper reports a computational model for determining temporal relations in Chinese. The model takes into account the effects of linguistic features, such as tense/aspect, temporal connectives, and discourse structures, and makes use of the fact that events are represented in different temporal structures. A machine learning approach, Weighted Bayesian Classifier, is developed to map their combined effects to the corresponding relations. An empirical study is conducted to investigate different combination methods, including lexicalbased, grammatical-based, and role-based methods. When used in combination, the weights of the features may not be equal. Incorporating with an optimization algorithm, the weights are fine tuned and the improvement is remarkable.
منابع مشابه
Phoneme Classification Using Temporal Tracking of Speech Clusters in Spectro-temporal Domain
This article presents a new feature extraction technique based on the temporal tracking of clusters in spectro-temporal features space. In the proposed method, auditory cortical outputs were clustered. The attributes of speech clusters were extracted as secondary features. However, the shape and position of speech clusters change during the time. The clusters temporally tracked and temporal tra...
متن کاملA New Hybrid Framework for Filter based Feature Selection using Information Gain and Symmetric Uncertainty (TECHNICAL NOTE)
Feature selection is a pre-processing technique used for eliminating the irrelevant and redundant features which results in enhancing the performance of the classifiers. When a dataset contains more irrelevant and redundant features, it fails to increase the accuracy and also reduces the performance of the classifiers. To avoid them, this paper presents a new hybrid feature selection method usi...
متن کاملAnalysis of a Fusion Method for Combining Marginal Classifiers
The use of multiple features by a classifier often leads to a reduced probability of error, but the design of an optimal Bayesian classifier for multiple features is dependent on the estimation of multidimensional joint probability density functions and therefore requires a design sample size that, in general, increases exponentially with the number of dimensions. The classification method desc...
متن کاملIdentification of Multi-word Expressions by Combining Multiple Linguistic Information Sources
We propose a framework for using multiple sources of linguistic information in the task of identifying multiword expressions in natural language texts. We define various linguistically motivated classification features and introduce novel ways for computing them. We then manually define interrelationships among the features, and express them in a Bayesian network. The result is a powerful class...
متن کاملDiscriminating between Similar Languages using Weighted Subword Features
The present contribution revolves around a contrastive subword n-gram model which has been tested in the Discriminating between Similar Languages shared task. I present and discuss the method used in this 14-way language identification task comprising varieties of 6 main language groups. It features the following characteristics: (1) the preprocessing and conversion of a collection of documents...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004